

30 June 2022

FINAL DRILLING RESULTS - ZEMPLIN SILVER - PHASE 2

- Zemplin Phase 2 drilling has completed six holes for 2,050 metres with results up to 0.5m @ 516 g/t Ag
- Tested strike and depth potential of previously discovered, high-grade mineralisation (up to 1,220 g/t silver)
- Results now reported for holes CZDD007 to CZDD010

Drilling was designed to test the strike and depth potential of a fully preserved silver and base metal mineralised system.

The Directors of Prospech Limited ('Prospech' or 'the Company') (ASX: PRS) are pleased to advise that Phase 2 drilling has been completed at the Zemplin silver-lead-zinc prospect within the Cejkov-Zemplin exploration licence, located in the Eastern Slovakian neovolcanic belt.

This program follows Prospech drilling in April 2021, which intersected over 40 epithermal veins hosted within zones of hydrothermally altered volcanics. The Zemplin structure consists of parallel zones which remain open to the northwest and southeast. The main silver zone is now interpreted as being a narrow series of parallel structures.

Results from the Phase 2 drilling include:

• **CZDD007**: 0.5m @ 98 g/t Ag from 103.5m

0.5m @ 191 g/t Ag from 171.0m

• **CZDD008:** 1.0m @ 21 g/t Ag from 269.0m

5.0m @ 7 g/t Ag and 0.31 g/t Au from 285.0m

• **CZDD009:** 1.0m @ 42 g/t Ag from 180.8m

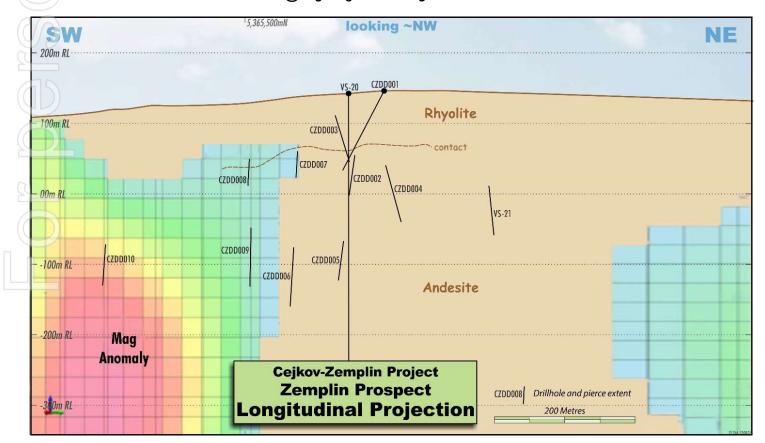
0.5m @ 516 g/t Ag and 0.74 g/t Au from 180.8m

0.5m @ 23 g/t Ag and 1.35 g/t Au from 194.0m

• **CZDD010:** 1.0m @ 34 g/t Ag and 0.17 g/t Au from 140.0m

Previously reported results from the Phase 1 drilling at Zemplin include:

CZDD001: 3.0m @ 136 g/t Ag from 59.0m and 4.5m @ 147 g/t Ag from 85.3m 2.3m @ 240 g/t Ag from 87.5m including CZDD002: 6.0m @ 30 g/t Ag from 111.0m 6.0m @ 117 g/t Ag from 94.0m CZDD003: including 1.8m @ 291 g/t Ag from 97.2m 4.4m @ 34 g/t Ag, from 49.6m CZDD004: 4.3m @ 201 g/t Ag from 92.5m and including 0.5m @ 1,220 g/t Ag from 92.5m


CZDD005: 0.35m @ 61 g/t Ag from 93.65m

1.5m @ 33 g/t Ag from 118m

1.0m @ 148 g/t Ag and 0.46 g/t Au from 118m

• **CZDD006:** 3.0m @ 24 g/t Ag from 140m

5.0m @ 8 g/t Ag and 0.23 g/t Au from 303m

A high grade >500 g/t Ag zone is open, albeit narrow in CZDD009.

Prospech Managing Director Jason Beckton comments:

"An open, high grade zone, albeit narrow, at the Zemplin prospect epithermal vein system has been discovered in CZDD009 which is above the magnetic zone as currently interpreted and partially tested by CZDD010. Further drilling along strike from this high grade zone, to the south west of the Zemplin project, will be evaluated in conjunction with drilling results from the current drilling program at the Hodrusa project."

This announcement has been approved by the Managing Director, Jason Beckton.

For further information, please contact:

Jason Beckton **Managing Director** Prospech Limited +61 (0)438 888 612

Competent Person's Statement

The information in this Report that relates to Exploration Results is based on information compiled by Mr Jason Beckton, who is a Member of the Australian Institute of Geoscientists. Mr Beckton, who is Managing Director of the Company, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Beckton consents to the inclusion in this Report of the matters based on the information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1 Zemplin Silver Prospect Drilling

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 Rock chip grab samples not reported in this report were collected from outcrops, spoil heaps and accessible surface and underground workings of queries, and zones of silicification, within Neogene volcanics under the supervision of a qualified geolo Sample locations were surveyed with a handheld Gand marked into sample books.
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). 	Diamond drilling HQ3 size triple tube.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core is measure in the triple tube split before laying the core boxes to ensure minimum disturbance and most accurate calculation of core recoveries. Overall core recoveries have been very high at 98% Any relationship between core recovery and grade cannot be determined at this time, but due to the hi core recovery, bias is considered very unlikely.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) 	The complete core is logged in detail by qualified geologists. Core is photographed wet and dry. All c is oriented. Detail structural measurements are collected. Core logging is a combination of qualitatiand quantitative information.

Criteria	JORC Code explanation	Commentary
	photography.The total length and percentage of the relevant	
Sub-sampling techniques and sample preparation Quality of assay data and laboratory tests	 The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld 	 Approximately 1 to 2 Kg of material from each rock chip was sent to the laboratory for analysis. All sampling done under supervision of a qualified geologist. Core is manually split in to 2 equal halves using a diamond saw. The core is split along the core orientation reference line, where available. Half-core is considered to be a high-quality and very representative method of sample. Sample lengths are nominally 1 metre but vary to honour geological contacts. Samples are stored in a secure location in Companies storage facilities and transported to the ALS laboratory in Romania for sample preparation of fine crush, riffle split and pulverizing of 1kg to 85% < 75µm. Pulps are analyzed by ALS Romania using method
	XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Pulps are analyzed by ALS Romania using method code ME-ICP61, a 33 element determination using a four acid digestion and 30 gram charge fire assay with AA finish (Au-AA25) for gold. Ore grades are analysed by OG62 – 4 acid digestion method for each element when identified. Where Au repeatability is observed or where visible gold is observed, check assays are performed using the Screen Fire Assay technique. Standards and blanks are included with each batch of drill core samples. At this stage of the project, field duplicates and externa laboratory checks are not employed in order to manage costs. Should a prospect advance to the resource estimation stage, this procedure will be reviewed.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Laboratory provides assay certificates, which are stored electronically both in ALS and Company's servers. Laboratory CSV files are merged with GPS Location data files using unique sample numbers as the key. No adjustments made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Rock chip samples are located using handheld GPS receivers with accuracy from 10-5m. UTM projection WGS84 Zone 34N and local grid SJTSK03. Conversion between local and UTM grid is run through national certified web portal. The topographic control, using handheld GPS, was adequate for the survey. Drill collars are surveyed using a differential GPS or by triangulation depending of the tree cover and other environmental factors. Downhole surveys are taken at nominal 50m intervals down the hole. Excessive deviation is not generally a problem in this field and this interval is considered sufficient. Downhole azimuth readings at magnetic and converted to Grid by adding 6.6 degrees.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	It is not yet determined whether the results from this drilling will be used in a mineral resource estimate.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be 	 No bias is believed to be introduced by the sampling method. Drilling is designed to intersect the target structure as close to normal as is possible given the constraints of topography and access. In this program no holes were drilled at acute angles to the target structure.

Criteria	JORC Code explanation			Commentary
		assessed and reported if material.		
Sample security	•	The measures taken to ensure sample security.	•	Samples were delivered to ALS Minerals laboratory in Romania by Prospech trusted contractor and were not left unattended at any time. There were no incident reports from ALS lab on sample receiver cell.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	•	No audits or reviews of the data management system have been carried out.

Criteria	JORC Code explanation	Commentary
Mineral tenemen and land tenure status		 Prospech Limited, through subsidiaries and contrarights, holds 100% rights on the Cejkov Zemplin tenement. The laws of Slovakia relating to exploration and minave various requirements. As the exploration advispecific filings and environmental or other studies be required. There are ongoing requirements under Slovakian mining laws that will be required at each stage of advancement. Those filings and studies a maintained and updated as required by Prospech's environmental and permit advisors specifically enging for such purposes. The Company is the manager of operations in accordance with generally accepted mining industristandards and practices.
Exploration done by other parties Geology	 Acknowledgment and appraisal of exploration by other parties. Deposit type, geological setting and style of 	 Anciently, the target was silver, the currency of the and more recently, during the Communist era, the targets were industrial base metals, copper, lead, and others. As a result, much of the country, inclu the Company's exploration license areas, has not subject to modern western exploration methodolog exploitation. Communist-era base metal and coal production was substantial and smelting of aluminium and nickel (material imported from Hungary and Albania) was carried out. Coal, gold, silver, talc, anhydrite and magnesite (and limestone, dolomite and gravel), bentonite, zeolite and industrial minerals are being mined in Slovakia today. An underground gold mir a third party mining lease enclosed within the HHB exploration license, the Rozalia Mine, continues in operation today, trucking a gravity/flotation concento a smelter in Belgium. Communist-era gold assays used in Government a private exploration programs have been proven to unreliable and this must be taken into account whe interpreting reports from the Communist era. Prospech holds 100% of Cejkov Zemplin Exploratic Concession which has been explored in the past b Slovak Geological Survey pre 1990s, RTZ (Rio Tin Zinc) in the late 1990s and Arc Minerals predecess Ortac Minerals Plc in 2011 to 2012. The Cejkov Zemplin concession is located approximately 66 kilometres south of Eastern Regicity of Kosice in Slovakia, a country member of the European Union and Eurozone. Located on the Bogrom river the Zemplin prospect
Geology	Deposit type, geological setting and style of mineralisation.	part of the 29.23 Km2, 100%-owned Cejkov-Zemp Licence, located in eastern Slovakia. Zemplin is prospective for epithermal precious metals and ba metals vein-style mineralization in Neogene Volcal as per the company's projects at Hodrusa, Nova B Rudno and Pukanec.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth	All below WGS 84 Zone 34N Grid Collar Coordinates

Criteria JORC Code explanation Commentary

the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

Hole_ID	UTM_East	UTM_North	RL	Depth
CZDD005	559201.74	5365624.69	146.288	317.9
CZDD006	559270.6	5365564.82	143.783	327
CZDD007	559271.58	5365565.24	143.721	344.5
CZDD008	559296.03	5365499.97	140.063	302.6
CZDD009	559295.21	5365499.65	140.126	338.9
CZDD010	559188.83	5365197.62	116.056	419.8
				2050.7

Survey details for previously unreported drilling;

Hole_ID	Depth	Dip	AG_Azimu	TM_Azimu	Comments
CZDD005	0	-59.68	69.86		Reading from 15 m
CZDD005	15	-59.68	69.86	77.23	
CZDD005	50	-59.3	68.82	76.19	
CZDD005	100	-59.09	72.72	80.09	
CZDD005	150	-58.43	71.37	78.74	
CZDD005	200	-57.43	72.11	79.48	
CZDD005	250	-56.5	72.96	80.33	
CZDD005	300	-55.61	73.66	81.03	
CZDD006	0	-69.22	65.18	72.55	Reading from 15m
CZDD006	15	-69.22	65.18	72.55	
CZDD006	50	-69.11	66.8	74.17	
CZDD006	100	-68.38	69.31	76.68	
CZDD006	150	-68.11	69.35	76.72	
CZDD006	200	-67.7	71.42	78.79	
CZDD006	250	-67.47	72.06	79.43	
CZDD006	300	-66.72	72.38	79.75	
CZDD007	0	00.72	, 2.30	,5.75	Reading from 15m
CZDD007	15	-44.25	63.27	70.64	
CZDD007	50	-44.25	65.8	73.17	
CZDD007	100	-44.25	66.17	73.54	
CZDD007	150	-43.42	66.85	74.22	
CZDD007	200	-43.42	66.89	74.22	
CZDD007	250	-42.87	67.25	74.20	
CZDD007	300	-40.34	67.58	74.95	
CZDD007 CZDD008	344	-40.07 -46.54	67.49 64.6	74.86	Reading from 15m
CZDD008	15	-46.54	64.6	71.97	neading from 15m
CZDD008	50	-45.7	65.63	71.97	
CZDD008	100				
		-45.21	66.2	73.57	
CZDD008	155	-44.09	66.65	74.02	
CZDD008	200	-43.01	66.2	73.57	
CZDD008	250	-41.45	66.34	73.71	
CZDD008	300	-41.3	66.78	74.15	D
CZDD009	0	-65.24	64.54		Reading from 15m
CZDD009	15	-65.24	64.54	71.91	
CZDD009	50	-64.68	65.96	73.33	
CZDD009	100	-64.96	66.11	73.48	
CZDD009	150	-64.26	65.2	72.57	
CZDD009	200	-64.01	64.8	72.17	
CZDD009	250	-63.61	66.04	73.41	
CZDD009	300	-63.46	65.51	72.88	
CZDD009	335	-62.99	65.44	72.81	
CZDD010	0	-60.51	42.84		Reading from 15m
CZDD010	15	-60.51	42.84	50.21	
CZDD010	50	-60.33	45.2	52.57	
CZDD010	100	-60.05	46.17	53.54	
CZDD010	150	-59.38	47.79	55.16	
CZDD010	200	-59.13	48.8	56.17	
CZDD010	250	-57.97	49.32	56.69	
CZDD010	320	-56.52	48.49	55.86	
CZDD010	350	-56.15	48.7	56.07	
CZDD010	400	-55.51	48.98	56.35	

Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.
- The default sample interval is 1 metre but this may vary to take into account geological boundaries. Aggregate intercepts are length-weighted, and no cutting of high grades is considered necessary.
- · Metal equivalents are not reported

Hole_ID mFrom mTo SampleID Ag_ppm Au_ppm Pb_ppm Zn_ppm

		Con	nment	ary		
CZDD007	88	89 M664990	-0.5	0.01	19	22
CZDD007	89	90 M664991	-0.5	-0.01	23	29
CZDD007	90	91 M664992	-0.5	-0.01	19	44
CZDD007	91	92 M664993	0.6	0.01	21	24
CZDD007	92	93 M664994	-0.5	0.01	21	78
CZDD007 CZDD007	93	94 M664995 95 M664996	0.9	-0.01 -0.01	24	201 98
CZDD007		96 M664997	0.9	0.01	23	98
CZDD007	95	97 M664998	0.5	-0.01	24	80
CZDD007	97	98 M664999	1.9	-0.01	31	185
CZDD007		99 M665001	1.5	-0.01	22	106
CZDD007	99	100 M665002	5.1	-0.01	35	147
CZDD007	100	101 M665003	5.5	-0.01	39	151
CZDD007	101	102 M665004	3.2	-0.01	32	129
CZDD007		103 M665005	10.8	0.01	72	1775
CZDD007	103	103.5 M665006	14.6	-0.01	137	1595
CZDD007	103.5	104 M665007	98	-0.01	2670	4180
CZDD007	104	105 M665008	4.3	0.01	94	304
CZDD007	105	106 M665009	4.9	0.01	55	721
CZDD007	106	107 M665010	0.9	-0.01	35	672
CZDD007	125	126 M665011	4.2	0.25	38	160
CZDD007	126	127 M665012	4.8	0.19	60	343
CZDD007	127	128 M665013	7.6	0.19	130	563
CZDD007	128	129.1 M665014	2.6	-0.01	83	381
CZDD007	129.7	131 M665014				
CZDD007	213		5.6 14.8	0.01	92 284	805 898
		214 M665035				
CZDD007	214	215 M665036	6.7	0.01	188	630
CZDD007	215	216 M665037	4.5	0.02	146	451
CZDD007	216	217 M665038	4.9	0.03	136	538
CZDD007		218 M665039	3.2	0.01	44	305
CZDD007		269 M665040	38.5	0.08	347	3320
CZDD007	269	270 M665041	11.5	0.02	352	1225
CZDD007		271.5 M665042	7.1	0.02	113	293
CZDD007	271.5	272 M665043	7.9	0.03	185	385
CZDD007	272	272.5 M665044	2.1	0.01	35	145
CZDD007	274	275 M665045	3.5	0.01	55	343
CZDD007	275	276 M665046	3.6	0.02	27	241
CZDD007	276	277 M665047	1.9	0.02	42	176
CZDD007	277	278 M665048	-0.5	0.01	16	137
CZDD007	278	279 M665049	0.9	0.01	27	114
CZDD007	304	305 M665051	3.7	0.04	27	62
CZDD007	305	306 M665052	0.7	0.01	4	28
CZDD007	306	307 M665053	3.5	0.04	19	46
CZDD007	307	308 M665054	5.2	0.05	31	53
CZDD007		319 M665055	3.3	0.02	184	139
CZDD007	319	320 M665056	0.7	0.01	270	172
CZDD007		321 M665057	0.6	0.01	41	154
CZDD007	320	321 M665057 322 M665058	3.4	0.01	43	115
CZDD007				0.02	813	859
CZDD007	323	323 M665059 324 M665060	6.1 2.1	0.03	25	58
CZDD007	335	336 M665061	2.3	0.05	33	103
CZDD007 CZDD007	336 337	337 M665062	1.3	0.02	15	102 101
		338 M665063	-0.5	0.01	19	
CZDD007	338	339 M665064	1.2	0.01	40	171
CZDD007	131	132 M665016	5.4	-0.01	513	2080
CZDD007	149	150 M665017	2.8	0.01	39	415
CZDD007	150	151 M665018	4.1	0.01	40	347
CZDD007	151	152 M665019	3.8	0.01	45	384
CZDD007	152	153 M665020	5.6	0.04	92	845
CZDD007	164	165 M665079	1.8	-0.01	15	410
CZDD007	165	166 M665080	2.9	0.01	24	417
CZDD007 CZDD007	166 167	167 M665081 168 M665082	3.4 4.7	0.01	27 58	498 401
CZDD007		169 M665083	5.5	0.01	76	1085
CZDD007	169	170 M665021	3.5	0.01	63	1060
CZDD007		171 M665022	12.8	0.01	712	2820
CZDD007	171	171.5 M665023	191	0.01	3330	35600
CZDD007		172 M665024	5.8	0.01	407	1130
CZDD007	172	173 M665026	6.1	0.03	304	2320
CZDD007		174 M665027	5.7	0.02	61	1035
CZDD007		175 M665028	8.8	0.03	69	2750
CZDD007		176 M665029	16.7	0.02	107	1260
CZDD007	176	177 M665030	9.7	0.02	547	2830
CZDD007	177	178 M665031	29	0.02	564	2370
CZDD007		179 M665032	21.3	0.01	392	4380
CZDD007		180 M665033	17.2	0.03	413	2260
CZDD007		181 M665065	3.7	0.01	53	416
CZDD007	181	182 M665066	18	0.02	215	2060
CZDD007	182	183 M665067	5.4	0.01	203	1360
CZDD007	183	184 M665068	7.3	0.02	220	1730
CZDD007	184	185 M665069	4.9	0.01	91	1020
CZDD007	185	186 M665070	3.8	0.01	250	621
CZDD007	186	187 M665071	5.1	0.01	151	589
CZDD007		188 M665072	7.1	0.03	174	943
CZDD007		189 M665073	5.2	0.01	239	1055
		190 M665074	7.5	0.01	295	1655
CZDD007		191 M665076	5	0.01	121	627
CZDD007 CZDD007	190			0.01	42	434
	190 191	192 M665077	3	0.01		
CZDD007	191		3.9	0.01	70	451
CZDD007 CZDD007	191 192	192 M665077			70 144	451 547
CZDD007 CZDD007 CZDD007	191 192	192 M665077 193 M665078	3.9	0.01		
CZDD007 CZDD007 CZDD007	191 192	192 M665077 193 M665078	3.9	0.01		
CZDD007 CZDD007 CZDD007	191 192	192 M665077 193 M665078	3.9	0.01		
CZDD007 CZDD007 CZDD007	191 192	192 M665077 193 M665078	3.9	0.01		
CZDD007 CZDD007 CZDD007	191 192	192 M665077 193 M665078	3.9	0.01		

JORC Code explanation			Comme	illai y			
	CZDD008	136	137 M665084	0.5	-0.01	15	49
	CZDD008	137	138 M665085	1	-0.01	28	35
	CZDD008	138	138.7 M665086	0.9	-0.01	24	524
	CZDD008	138.7	139.3 M665087	-0.5	-0.01	16	58
	CZDD008	139.3	140 M665088	1.4	-0.01	43	35
	CZDD008	140	141 M665089	1.8	-0.01	48	26
	CZDD008	141	142 M665090	-0.5	-0.01	16	11
	CZDD008	142	142.9 M665091	5.6	-0.01	69	122
	CZDD008	145.7	146.2 M665092	4.9	-0.01	43	34
	CZDD008	146.2	147 M665093	3.1	-0.01	40	55
	CZDD008	147	148 M665094	1.7	0.01	22	193
	CZDD008	148	149 M665095	0.5	-0.01	19	243
	CZDD008	149	150 M665096	-0.5	0.01	19	129
	CZDD008	150	151 M665097	-0.5	-0.01	24	362
	CZDD008	151	152 M665098	-0.5	-0.01	24	340
	CZDD008	152	153 M665099	-0.5	-0.01	26	172
	CZDD008	153	154 M665101	-0.5	-0.01	25	185
	CZDD008	154	155 M665102	-0.5	-0.01	44	98
	CZDD008	155	156 M665103	-0.5	-0.01	18	125
	CZDD008	231	232 M665104	-0.5	-0.01	17	27
	CZDD008	232	233 M665105	-0.5	-0.01	15	42
	CZDD008	233	234 M665106	-0.5	-0.01	4	42
	CZDD008	269	270 M665107	22.4	0.04	2070	5770
	CZDD008	270	271 M665108	4.6	0.01	668	2320
	CZDD008	271	272 M665109	0.9	-0.01	30	255
	CZDD008	272	273 M665110	1.7	-0.01	78	328
	CZDD008	273	274 M665111	0.5	0.02	7	120
	CZDD008	274	275 M665112	0.8	0.02	19	214
	CZDD008	275	276 M665113	1.9	-0.01	65	368
	CZDD008	276	277 M665114	0.7	-0.01	12	89
	CZDD008	277	278 M665115	1.1	0.03	12	88
	CZDD008	278	279 M665116	3	0.01	20	131
	CZDD008	279	280 M665117	1.8	0.01	21	141
	CZDD008	280	281 M665118	5	0.02	117	454
	CZDD008	281	282 M665119	2.4	0.01	134	286
	CZDD008	282	283 M665120	1.4	-0.01	48	208
	CZDD008	283	284 M665121	3.6	0.01	92	325
	CZDD008	284	285 M665122	2.2	0.1	46	186
	CZDD008	285	286 M665123	1.6	0.15	86	312
	CZDD008	286	287.4 M665124	1.6	0.18	48	210
	CZDD008	287.4	288.4 M665126	11	0.48	2030	8020
	CZDD008	288.4	289 M665127	11.9	0.04	1365	3250
	CZDD008 CZDD008	289 290	290 M665128 291 M665129	9.3 7.2	0.73	160 130	173 80
	CZDD008	290	291 M665129 292 M665130	4	0.03	62	176
	CZDD008	291	293 M665131	5.5	0.01	59	153
	CZDD008	293	294 M665132	6.4	0.02	47	86
	CZDD008	293	295 M665133	2.3	0.08	18	95
	CZDD008	295	296 M665134	3.2	0.03	22	150
	CZDD008	296	297 M665135	4.5	0.13	22	145
	CZDD008	297	298 M665136	3.6	0.02	39	94
	CZDD008	298	299 M665137	2.2	0.01	29	166
	CZDD008	299	300 M665138	1.3	0.01	15	167
	CZDD008	300	301 M665139	2.4	0.05	49	160
	CZDD008	301	302 M665140	6.2	0.02	328	492
	CZDD008	302	302.6 M665141	7.3	0.06	389	345

Hole_ID mFrom mTo SampleID Ag_ppm Au_ppm Pb_ppm Zn_ppm

Criteria	JORC Code explanation			Col	mmen	itary		
		CZDD009	112	113 M665142	-0.5	0.01	16	50
		CZDD009	113	114 M665143	-0.5	-0.01	13	47
		CZDD009 CZDD009	114	115 M665144 134 M665145	-0.5 0.6	-0.01 -0.01	12 13	57 58
		CZDD009	134	135 M665146	0.6	-0.01	17	88
		CZDD009	135	136 M665147	0.9	-0.01	22	71
		CZDD009 CZDD009	136 137	137 M665148 138 M665149	0.5	-0.01 -0.01	17 15	57 72
		CZDD009	138	139 M665151	-0.5	0.01	10	63
		CZDD009	139	140 M665152	-0.5	-0.01	11	76
		CZDD009 CZDD009	140 141	141 M665153 142 M665154	-0.5 -0.5	0.01 -0.01	7	49 45
		CZDD009	150	151 M665155	-0.5	-0.01	12	71
		CZDD009	151	152 M665156	-0.5	0.01	-2	65
		CZDD009	152	153 M665157	-0.5 42	-0.01	9	55
		CZDD009 CZDD009	170 171	171 M665158 172 M665159	9.5	0.09	203 268	777 1135
		CZDD009	172	173 M665160	7.4	0.01	151	524
		CZDD009 CZDD009	173 174	174 M665161	12.6	0.01	157	427
		CZDD009	175	175 M665162 176 M665163	3.2 2.4	0.01	46 27	206 146
		CZDD009	176	177 M665164	2.4	0.01	36	231
		CZDD009	177	178 M665165	-0.5	-0.01	6	241
		CZDD009 CZDD009	178 179	179 M665166 180 M665167	-0.5 1.5	-0.01 -0.01	9 37	190 162
		CZDD009	180	180.8 M665168	4.8	0.03	37	83
		CZDD009	180.8	181.3 M665169	516	0.74	683	2090
		CZDD009	181.3	182 M665170	-0.5	0.02	184	530
		CZDD009 CZDD009	182 188	183 M665171 189 M665172	-0.5 0.6	-0.01 -0.01	9 21	289 155
		CZDD009	189	190 M665173	3.8	0.01	39	113
		CZDD009	190	191 M665174	6.2	0.02	109	427
		CZDD009 CZDD009	191 191.5	191.5 M665176 192.5 M665177	1.5	0.02	1570 60	6270 274
		CZDD009	192.5	194 M665178	3.9	0.02	86	360
		CZDD009	194	194.5 M665179	23.1	1.35	25	63
		CZDD009	194.5	195.5 M665180	1.6	0.04	17	134
		CZDD009 CZDD009	232	233 M665181 234 M665182	-0.5 1.5	-0.01 0.01	18 34	147 118
		CZDD009	234	235 M665183	3.8	0.01	95	423
		CZDD009	235	236 M665184	2.6	0.03	24	72
		CZDD009	236	237 M665185	3	0.01	38	265
		CZDD009 CZDD009	237 238	238 M665186 239 M665187	4	0.01	10 63	80 219
		CZDD009	239	240 M665188	6.9	0.03	159	317
		CZDD009	253.6	254.1 M665189	-0.5	-0.01	10	103
		CZDD009 CZDD009	254.1 254.6	254.6 M665190 255.6 M665191	3.2	0.01	3170 50	6580 185
		CZDD009	255.6	256.6 M665192	9.5	0.02	42	80
		CZDD009	327	328 M665193	1.3	0.01	73	348
		CZDD009 CZDD009	328 329	329 M665194	1.3 0.5	-0.01 -0.01	146 22	1080 113
		CZDD009	329	330 M665195 331 M665196	1.2	-0.01	179	709
		CZDD009	331	332 M665197	1.9	0.01	245	480
		CZDD009	332	333 M665198	1.6	0.01	128	537
		CZDD009 CZDD009	333 334	334 M665199 335 M665201	-0.5	0.01 -0.01	22 11	94 85
		CZDD009	335	336 M665202	-0.5	0.01	15	82
		CZDD009	336	337 M665203	-0.5	-0.01	13	79
		CZDD009 CZDD009	337 338	338 M665204 338.8 M665205	-0.5 -0.5	-0.01 -0.01	66 13	249 79
		CZDD010 CZDD010	261 262	262 M665206 263 M665207	-5 -5	-0.01 -0.01	11	42 103
		CZDD010	263	264 M665208	-5	-0.01	11	17
		CZDD010	264	265 M665209	-5	-0.01	12	100
		CZDD010 CZDD010	265 266	266 M665210 267 M665211	-5 -5	-0.01 -0.01	9	58 148
		CZDD010	267	268 M665212	-5	-0.01	10	154
		CZDD010	306	307 M665213	-5	-0.01	34	71
		CZDD010	307	308 M665214	-5	-0.01	43	77
		CZDD010 CZDD010	308 309	309 M665215 310 M665216	-5 1.3	-0.01 0.01	36 46	90 6690
		CZDD010	310	311 M665217	4	-0.01	38	149
		CZDD010	311	312 M665218	13.1	0.01	5350	21400
		CZDD010 CZDD010	312 313	313 M665219 314 M665220	-5	0.01	458 53	1415 58
		CZDD010	314	315 M665221	-5	0.01	24	68
		CZDD010	336	337 M665222	0.8	0.01	48	229
		CZDD010 CZDD010	337 338	338 M665223 339 M665224	1.2 4.2	0.01	38 115	382 132
		CZDD010	339	340 M665226	8.9	0.01	215	133
		CZDD010	340	341 M665227	3	0.02	81	123
		CZDD010	341	342 M665228	2.2	0.02	55	208
		CZDD010 CZDD010	342 343	343 M665229 344 M665230	4.8	0.01	49 52	167 191
		CZDD010	344	345 M665231	2.6	0.02	50	110
		CZDD010	345	346 M665232	2	0.02	45	198
		CZDD010 CZDD010	346 347	347 M665233 348 M665234	1.5 0.8	0.01	42 26	137 185
		CZDD010	348	349 M665235	3.5	0.04	111	153
		CZDD010	349	350 M665236	8.1	0.08	111	211
		CZDD010	350 351	351 M665237	2.5	0.04	82	207
		CZDD010 CZDD010	351 352	352 M665238 353 M665239	1.7	0.02	47 21	113 137
		CZDD010	353	354 M665240	0.7	0.02	27	100
		CZDD010	354	355 M665241	-5	0.01	20	97
		CZDD010 CZDD010	355 356	356 M665242 356.8 M665243	0.6 4.7	0.01	25 548	111 341
		CZDD010	356.8	357.8 M665244	33.8	0.06	4720	7400
		CZDD010	357.8	359 M665245	5.9	0.08	130	454
		CZDD010 CZDD010	359 360	360 M665246 361 M665247	9.6	0.1	2970 2620	6230 4710
		CZDD010	361	362 M665248	1.9	0.04	186	761
		CZDD010	362	363 M665249	1.3	0.02	61	91
					1.7	0.02	75	
		CZDD010	363	364 M665251	1.3		75	78
		CZDD010 CZDD010	364	365 M665252	0.7	0.01	26	88
		CZDD010 CZDD010 CZDD010 CZDD010	364 416 417	365 M665252 417 M665253 418 M665254	0.7 0.6 0.6	0.01 0.03 0.02	26 22 47	88 146 245
		CZDD010 CZDD010 CZDD010	364 416	365 M665252 417 M665253	0.7 0.6	0.01 0.03	26 22	88 146

Criteria	JORC Code explanation	Commentary
Relationship	These relationships are particularly important in	All drill holes results returned from four-hole program.
between mineralisation widths and intercept lengths	 the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	All thickness reported are down-hole
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	At this stage the relationship between drilled width and true width cannot be reliably estimated.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The location and results received for drill-core samples are displayed in the attached maps and/or tables. Coordinates are UTM Zone 34N.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Results for all mineralised samples collected in this program are displayed on the attached maps and/or tables.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No metallurgical or bulk density tests were conducted at the project by Prospech.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further drilling has been planned at Zemplin to test the silver-bearing lodes along strike and at depth.